Наиболее востребованные технические навыки для аналитиков данных

Какие технологические навыки ищут работодатели в аналитиках данных? Как они соотносятся с навыками, желаемыми для инженеров данных и ученых данных?

Я проанализировал онлайн списки вакансий с января 2020 года, чтобы найти ответы. В этой статье я поделюсь ответами и предложу предлагаемый путь обучения для начинающих аналитиков данных.

Это моя третья статья, в которой рассматриваются технические навыки на позициях с интенсивным использованием данных.

Без лишних слов, вот лучшие 10 технологий из списков вакансий аналитика данных по состоянию на январь 2020 года.

Роль аналитика данных

Аналитики данных превращают данные в информацию. Они играют жизненно важную роль, делая данные действенными для лиц, принимающих решения. 👍

Аналитики данных часто берут данные, предоставленные инженерами данных, анализируют их и дают рекомендации. Они создают визуализации для отображения своих результатов в информационных панелях и презентациях. 📈

В отличие от исследователей данных, аналитики данных обычно не создают прогностические модели, основанные на алгоритмах машинного обучения.

Вот расширенная диаграмма, показывающая 30 наиболее распространенных технологий.

Вот те же данные в табличной форме.

Многие другие ключевые слова технологии были найдены; это были 30 самых высоких результатов. Давайте посмотрим на самые распространенные технологии.

SQL — это сокращение от языка структурированных запросов. Он отображается в более чем половине всех списков. SQL используется для работы с реляционными базами данных. SQL поставляется во многих вариантах, включая MySQL, Oracle, SQL Server, PostgreSQL и SQLite. Каждая версия имеет большую часть одного и того же основного API. Есть качественные бесплатные предложения.

Excel почти так же распространен, как SQL. Это доминирующая программа электронных таблиц. Это часть пакета программных средств Microsoft Office 365 . Хотя он не может обрабатывать огромные объемы данных, такие как базы данных SQL, Excel отлично подходит для быстрого анализа. Google Sheets — это конкурент с бесплатной версией и схожими основными функциями.

Tableau появляется примерно в четверти списков. Это программное обеспечение для бизнес-аналитики, позволяющее легко создавать визуализации и информационные панели. Возможности визуализации в Tableau намного лучше, чем в Excel. У Tableau есть бесплатная публичная версия, но если вы хотите сохранить конфиденциальность данных, вам нужно выложить деньги.

Python появляется примерно в четверти списков. Это очень популярный бесплатный язык программирования с открытым исходным кодом для работы с данными, веб-сайтами и сценариями. Это основной язык для машинного обучения. 🐍

R также находится в более чем 20% списков. Это популярный бесплатный язык с открытым исходным кодом для статистики, особенно в научных кругах.

Сравнение с Data Engineer и Data Scientist

Общее количество списков составило 16 325 для Data Analyst , 12 013 для Data Engineer и 9 396 для Data Scientist. Таким образом, аналитические работы относительно распространены. 😀

В приведенной ниже таблице показаны 10 наиболее распространенных технологий для списков аналитиков данных. Баллы за списки данных исследователей и инженеров данных также отображаются для каждого ключевого слова.

Несколько основных моментов:

  • SQL очень популярен для всех трех рабочих мест.
  • Excel более чем в четыре раза чаще встречается в списках аналитиков данных, чем списки ученых и инженеров данных.
  • Python, хотя он встречается примерно в четверти списков аналитиков данных, примерно в три раза более популярен в списках вакансий исследователей данных и инженеров данных.
  • R гораздо реже встречается на должностях аналитика данных и инженера данных, чем в списках работы ученого.
  • PowerPoint гораздо чаще встречается в списках аналитиков данных.

Что касается тенденций, мой анализ списков вакансий исследователей данных показал, что и R, и SAS имели большие падения популярности с 2018 по 2019 годы.

Стоит отметить, что в списках вакансий инженера данных было упомянуто гораздо больше технологий, чем в списках работы аналитика данных.

Совет

Если вы хотите стать аналитиком данных или стать более конкурентоспособным, я предлагаю вам изучить следующие технологии в порядке приоритета.

Учитесь Excel . Это быстрее, чем SQL. Я знал Excel по школе и по работе, но научился лучше, готовясь к сертификационному экзамену Microsoft Excel.

Выучи Табло. Tableau позволяет быстро создавать великолепные визуализации с помощью интерфейса перетаскивания.

Покажите, вы можете сделать презентацию PowerPoint . Есть много MOOC, которые обучают Microsoft PowerPoint.

Если вы продемонстрировали, что можете использовать вышеуказанные технологии для анализа и общения, вы должны быть достойным кандидатом на многие должности начального уровня. 👍

Если вы знакомы с вышеперечисленными навыками и хотите освоить новые навыки или получить право на большее количество должностей, я предлагаю вам изучить Python . Python отлично подходит, если вы хотите перейти к проектированию данных и науке о данных. 😀

Книга My Memorable Python предназначена для начинающих. Он доступен для Kindle и печатной копии с Amazon, а также в форме .epub и .pdf здесь .